
UNIVERSITY OF ILLINOIS AT CHICAGO

A Survey and Critique of Deep Learning

on Recommender Systems

by

Lei Zheng

in the

DEPARTMENT OF COMPUTER SCIENCE

September 2016

University Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

Abstract

Recommender systems have become extremely common in recent years. Companies,

such as Amazon or eBay, developed a large number products to meet different needs

of customers. A increasing number of options are available to customers in the era of

E-commerce. Thus, in this new level of customization, in order to find what they really

need, customers must process a large amount of information provided by businesses.

One solution to ease this overload problem is recommender systems. On one hand,

traditional recommender systems recommend items based on different criteria, such as

the past preference of users or user profiles. On the another hand, deep learning tech-

niques achieve promising performance in various areas, such as Computer Vision, Audio

Recognition and Natural Language Processing. However, applications of deep learning

in recommender systems have not been well explored yet. In this article, we firstly

introduce traditional techniques involved in recommender systems and deep learning

in the first chapter. And then, a survey and critique of several state-of-the-art deep

recommendation systems will be provided in the following chapters.

Contents

Abstract i

1 Introduction 1

1.1 Recommender Systems . 1

1.1.1 Collaborative Filtering . 1

1.1.1.1 Memory-based CF . 2

1.1.1.2 Model-based CF . 3

1.1.2 Content-based Recommender Systems 5

1.2 Deep Learning . 6

2 Restricted Boltzmann Machines for Collaborative Filtering 10

2.1 The Model . 10

2.2 Learning . 11

2.3 Prediction . 12

2.4 Critique . 12

3 Collaborative Deep Learning for Recommender Systems 13

3.1 Collaborative Deep Learning . 13

3.2 Learning the Parameters . 14

3.3 Critique . 15

4 Deep Content-based Music Recommendation 17

4.1 Weighted Matrix Factorization . 17

4.2 Deep Convolutional Neural Network . 18

4.3 Critique . 18

5 CoNN: Joint Modeling of Users and Items Using Reviews for Recom-
mendation 19

5.1 Architecture . 19

5.2 Network Training . 20

5.3 Critique . 21

6 Conclusion 22

ii

Chapter 1

Introduction

1.1 Recommender Systems

During the last decade, the variety and number of products and services provided by

companies has increased dramatically. Companies produce a large number of products

to meet the needs of customers. Although this gives more options to customers, it makes

it harder for them to process the large amount of information provided by companies.

Recommender systems are designed to help customers by introducing products or ser-

vices. These products and services are likely prefered by them based on user preferences,

needs, and purchase history. Nowadays, many people use recommender systems in their

daily life such as online shopping, reading articles, and watching movies.

Given a set of users U and a set of items V , a recommender systems is designed to

recommend items to the users according to the their purchase history or past ratings.

Usually, a recommeder system recommends items by either predicting ratings or pro-

viding a ranked list of items for each user. And, two kinds of techniques involved in

recommender systems are: Collaborative Filtering and Content-based recommendations.

1.1.1 Collaborative Filtering

Collaborative Filtering (CF) technique is a popular and well-known technique involved

in recommender systems. Many of the prominent recommendation approaches, such as

[1–3], are based on Collaborative Filtering (CF) technique [4].

Collaborative Filtering (CF) follows a simple observation that users tend to buy items

preferred by users with similar tastes. For example, in Table 1.1, user U1 tends to buy

item I2 since both user U1 and U4 prefer I1 and user U4 gives high rating for item I2.

1

Contents 2

In a common Collaborative Filtering (CF) setting, there is a collection of preferences

from users. For example, a list of M users {u1, u2, ..., uM} and a list of N items

{i1, i2, ..., iN} are given. A list of items, iui , has been rated by user ui. The ratings

can either be explicit indications on a 1-5 scale, or implicit indications. Implicit indi-

cations are generally implicit feedback, such as purchases or click-throughs, from users.

CF techniques can be either memory-based or model-based.

1.1.1.1 Memory-based CF

In memory-based CF systems, recommendations or predictions are made based on sim-

ilarity values. Rating data is used to calculated the similarity or weight between users

or items.

There are several advantages of memory-based CF. First of all, since we only need to

calculate similarity, it is easy to implement. Second, memory-based CF systems are

scalable to large size data. Third, most of memory-based systems are online learning

models. Thus, new arrival data can be handled easily. At last, the recommendation

results can be understood and can provide feedback to explain why recommend these

items. However, several limitations are also existed in memory-based CF techniques.

For example, since the similarity values are based on common items, when data are

sparse and common rated items are very few, the recommendation results are unreliable

and not accurate.

Neighbor-based CF is one of the most representative memory-based CF models. Neighbor-

based CF involves in two steps: similarity calculation and prediction. In the similarity

calculation step, the similarity values can be measured between users or items.

For example, the pearson correlation [5] between two users u and v is as following:

wu,v =

∑
i∈I (ru,i − r̄u)(rv,i − rv)√∑

i∈I (ru,i − r̄u)2
√∑

i∈I (rv,i − r̄v)2
(1.1)

where the i ∈ I sums over the items that are rated by both user u and user v.

Vector Cosine-based Similarity is another similarity metric used to measure the difference

between documents. Documents are represented as a vector of word frequency. In

neighbor-based CF, Vector Cosine-based Similarity is adopted to compute the similarity

across users or items. As shown in Eq. 1.2, Vector Cosine-based Similarity between

Contents 3

Table 1.1: An example of rating matrix

I1 I2 I3 I4
U1 4 ? 5 5
U2 4 2 1
U3 3 2 4
U4 4 4
U5 2 1 3 5

item i and item j can be derived.

wi,j = cos(
−→
i ,
−→
j) =

−→
i • −→j∥∥∥−→i ∥∥∥ ∗ ∥∥∥−→j ∥∥∥ (1.2)

where • denotes the dot product of two vectors.

In neighbor-based CF, to generate recommendations or predictions for user u, we use

similarity to generate a set of users that are close to user u. Then, the prediction of user

u can be calculated by using ratings from the set of users [6].

1.1.1.2 Model-based CF

Model-based CF, which is based on machine learning or data mining models, finds com-

plex rating patterns in training data. After the training process, model-based CF models

are expected to make intelligent predictions or recommendations for users. Model-based

CF algorithms are developed to counter the shortcomings of memory-based CF models.

One of simple model-based CF models to make recommendations is Naive Bayes (NB).

In NB, we assume that features are independent with each other. When we apply NB to

recommder systems, a similar assumption is used. For example, as shown in Table 1.1,

to derive the probability of what rating user U1 will give to item I2, we can calculate as

Eq. 1.3

rating = argmax p(r|U2 = 2, U4 = 4, U5 = 1)

= argmax p(r)p(U2 = 2|r)p(U4 = 4|r)p(U5 = 1|r) (1.3)

Several researchers conduct experiments to exploit potential of NB in recommender

systems. In the work of [7], NB is used to solve the recommendation problem in a

binary rating matrix. They show that better recommendations than neighbor-based

CF systems can be achieved by a simple NB based recommender systems. In addition,

Contents 4

[8] validates that Bayesian Network Classifier is also effective to the recommendation

problem.

Clustering algorithms are also useful in recommender systems. Clustering algorithms are

unsupervised learning algorithms and designed to cluster objects into different categories

without label information. In CF, clustering usually can be used as an intermediate

step. First, one clustering algorithm, such as K-Means, is used to cluster users or items

into different groups. Then, the conditional probability of ratings for an item can be

calculated based on their group information.

The most successful model-based CF techniques is Matrix Factorization (MF) [1]. They

find common factors that can be the underlying reasons of the ratings given by users.

For example, in a movie recommender system, these factors can be genre, actors, or

director of movies that may affect the rating behavior of users. Matrix factorization

techniques not only find these hidden factors, but also give the importance of them for

each user and how each item satisfies each factor. Matrix factorization techniques get the

matrix containing all the available ratings and find a feature set for each user and item

as the result of the factorization process. Then, a rating that each user assigns to each

item can get estimated by the scalar product of the two feature vectors corresponding

to those user and item. In this way, users with similar preference will have similar latent

features, and items which are favored by similar users will share similar latent features.

As shown in Eq. 1.4, MF approximates the rating matrix R with two matrices: U

and V , which can be viewed as latent factors of users and items, respectively. Each

row of matrix U and each column of matrix V are the latent factors of a user or item

respectively. By multiplying latent factors of a user to latent factors of an item, we get

an estimation of the corresponding rating.

R ≈ U × V (1.4)

[9] presents Probabilistic Matrix Factorization (PMF) which extends MF into the proba-

bilistic framework. Instead of approximating the rating matrix R by using two low-rank

matrices U, V , PMF models matrices U, V with two Gaussian distributions. As seen in

Fig. 1.6, user and item matrices U and V are drew from Gaussian distributions. The

probability of rating matrix R can be calculated as Eq/ 1.5

p(R|U, V, σ2) =

N∏
i=1

M∏
j=1

[
N(Rij |UTi Vj , σ2)

]Iij
(1.5)

Contents 5

Figure 1.1: The Graphic Model for PMF

Thus, the learning process of PMF is that given ratings R and hyper-parameters {σ2, σ2V , σ2U},
maximize the log-posterior as Eq. 1.6

lnp(U, V |R, σ2, σ2U , σ2V) =
1

2σ2

N∑
i=1

M∑
j=1

Iij(Rij − UTi Vj)
2 − 1

2σ2U

N∑
i=1

UTi Ui −
1

2σ2V

M∑
j=1

V T
j Vj

− 1

2

 N∑
i=1

M∑
j=1

Iij

 lnσ2 +NDlnσ2U +MDlnσ2V

+ C

(1.6)

Although PMF achieves better performance than MF, similar to MF, PMF only uses

rating data and fails to utilize content information to deal with the sparsity problem.

The lack of ratings hinder PMF to produce high quality recommendations for users with

few ratings. In addition, PMF is still a shallow model and unable to capture complex

rating patterns existing in rating data.

1.1.2 Content-based Recommender Systems

Although model-based CF achieves great success and attracts a lot attention, model-

based CF still has some drawbacks. The most important one is that most of model-based

CF models suffer from the sparsity problem. For those users who provide no ratings,

model-based CF is unable to generate reasonable recommendations.

To deal with the sparsity problem, researchers propose Content-based Recommender

Systems. These approaches utilize different resources, such as item information or user

profiles, to learn latent factors of users or items. In this manner, even one user provides

little ratings, the preference of the user can still be inferred.

Many existing works [10–12] only separately studied ratings and reviews. Studies on

reviews often concentrate on analyzing product features and sentiment [13, 14]. One of

Contents 6

the pioneer works that explored using reviews to improve the rating prediction is done by

[15]. It found that reviews are usually related to different aspects, such as price, service,

positive or negative feelings, and these aspects can be exploited for rating prediction.

Further works [16, 17] attempt to discover aspects from review text by using topic

modeling in an unsupervised manner. In [18], the authors propose to employ Topic

Modeling to discover latent aspects from either item or user reviews and predict ratings in

an unified model. They adopt an objective function that combines the accuracy of rating

prediction and the likelihood of the review corpus. This method achieves significant

improvement, compared with models which only use ratings or reviews. Similar to [18],

[19] also adopts Topic Modeling to discover latent factors from item reviews but employs

a mixture of Gaussian to model ratings.

Collaborative Topic Modeling [20] is designed to recommend articles. User and item

latent factors are modeled by a Gaussian distribution while item reviews are generated

from a topic distribution. Since both user reviews and item reviews reflect the character-

istics and latent aspects of corresponding users and items, [21] leverages user information

with a combination between collaborative filtering and aspect based opinion mining.

However, unlike we learn features automatically from reviews, it use hand-crafted tex-

tual or user-relevant features. [22] proposes a probabilistic model based on collaborative

filtering and topic modeling. This approach uncovers aspects and sentiments of users

and items. But, it does not incorporate ratings during modeling reviews.

[23] simultaneously exploits ratings and user and item reviews. But, this method suffers

from a scalability problem and can not deal with new coming users and items. Overall,

a limitation of the above studies is that their textual similarity is solely based on lexical

similarity. If two reviews are semantically related but use different words, these models

may not consider the two reviews to be similar. As we know, the vocabulary in English

is very diverse and two reviews can be semantically similar even with low lexical overlap,

so semantic meaning is especially important and has been lost in the works above. What

is more, in these works, reviews are represented by using bag-of-words. Therefore, word

order existed in reviews have not been preserved.

1.2 Deep Learning

Most of machine learning algorithms, such as Support Vector Machine (SVM) or Logistic

Regression, are of shallow architectures. Typically, shallow models consists of one or

two layers. Although these models achieve good performance and dominant in the 90’s,

Contents 7

due to its limited representation learning capacity, they have difficulties in modeling

complicated data, such as text, images and audios.

Recently, experimental results suggest that in order to train better AI models, deep

architecture is needed. Before that, models with two or three layers at most perform

better than deep models. Deep models tend to give worse results and become harder

to train. Until 2006, [24] shows that with a layer-wise training strategy, a Deep Belief

Network (DBN) can be successfully trained to predict hand written digits. This is

the first attempt and success to train a deep model. Before that, researchers have not

seriously exploited deep models due to lack of data and computational power. Generally,

deep architecture models consist of multiple layers and can learn a hierarchy of features

from low-level features to high-level ones.

A DBN is formed with a stack of Restricted Boltzmann Machines (RBM). In its first two

layer, we train a two layer RBM with one visible layer and one hidden layer. Then, the

activation probabilities of the hidden layer forms a visible layer to learn another hidden

layer. In this manner, RBM can be stacked to learn a multi-layer DBN.

Another type of deep models are Deep Neural Networks (DNN). DNN is Multi-Layer

Perceptron (MLP) with many hidden layers. Back-propagation (BP) [25] is employed

to learn DNN. The success of DNN is due to two techniques: a larger number of hidden

units and better parameter initialization techniques. A DNN with large number of

hidden units can have better modeling power. Even the learned parameters of the DNN

is a local optimal, the DNN can performs much better than those with less hidden units.

However, in order to converge to a local optima, a DNN with large number of units also

requires more training data and more computational power. This also explains why DNN

becomes popular until recently. Leaning a DNN is a highly non-convex problem, It is no

doubt that better parameter initialization can lead to better performance. Researchers

[26] found that parameters of DNN can be initialized with the learned parameters of a

DBN with the same architecture.

Deep Auto Encoder (DAE) is a special type of DNN. The difference between DAE and

DNN is that DAE is an unsupervised learning algorithm and the input and output of

DAE are the same. By forcing the input and output to be the same, the output of the

middle layer can be regarded as dense representations. Similar to DNN, DAE can also

be pre-trained by using DBN. [27] proposed a pre-training technique to learn a ”deep”

autoencoders with multiple layers. This technique involves treating each neighboring set

of two layers as a restricted Boltzmann machine. In this manner, the pre-training proce-

dure approximates a good parameter initialization. Then, they use a back-propagation

technique to fine-tune the pre-trained model.

Contents 8

Figure 1.2: The architecture of CNN

Convolutional Neural Network (CNN) is one of the most successful deep models in the

application of Computer Vision and are biologically-inspired variants of MLPs. As shown

in Fig. 1.2, the main components of CNN are convolutional layers and subsampling

layers. In its convolutional layers, the outputs of the previous layer are fed into a a set

of convolutional filters and generate a set of filtered results. Then, these results are sub-

sampleed based on their activations in a following sub-sampling layer. Convolutional

layers and sub-sampling layers can be alternatively added to build a deep CNN model.

As a class of deep models for learning features, the Convolutional Neural Networks

(CNN) learns a hierarchy of increasingly complex features. Without building hand-

crafted features, these methods utilize layers with convolving filters that are applied on

top of pre-trained word embeddings. Moreover, in benefiting from the shared weights,

CNNs have fewer parameters than traditional feed-forward neural networks.

Deep Learning technique [24, 27–30] is a hot and emerging area in both data mining

and machine learning communities. These models can be trained by either supervised

or unsupervised approaches. Deep learning models are initially applied to the field of

Computer Vision and Audio, Speech, and Language Processing. It outperformed many

state-of-the-art models [24, 28, 31, 32]. Later deep models have shown their effectiveness

for various NLP tasks. These tasks include semantic parsing [33], machine translation

[34], sentence modeling [35] and a variety of traditional NLP tasks [36].

Deep learning has recently been proposed for building recommender systems for both

collaborative and content based approaches. In [37], it shows that a Restricted Boltz-

mann Machines (RBM) model can slightly outperforms Matrix Factorization. In [38]

and [39], deep models are introduced to learn embedding from music. Due to the suc-

cess of Multi-view deep learning [40, 41], some researchers propose to learn latent factors

from different sources. [42] builds a multi-view deep model to learn a rich feature set

for users from their web browsing history and search queries. But, all approaches above

ignore review text.

Contents 9

To utilize information from text, [43] integrates an autoencoder and PMF. Item text is

represented by using bag-of-words and taken as input to the autoencoder to learn item

features. User features are modeled by a Gaussian distribution. However, they do not

jointly model users and items from text. In addition, this approach is only suitable for

one-class collaborative filtering problems [44].

Chapter 2

Restricted Boltzmann Machines

for Collaborative Filtering

In the work of [37], they introduce a two-layer Restricted Boltzmann Machines (RBM)

to model ratings. Since maximum likelihood estimation is intractable in these models,

they show that optimization can be done efficiently by following an approximation to

the gradient of a different objective function.

2.1 The Model

Here, we suppose that we have N users, M items and ratings ranging from 1 to K. If

each user rated all items, each user can be used as a training example for a RBM with

M visible softmax units. And, these visible units are fully connected to a set of hidden

units. However, since only a few items are rated by one user in a recommender system,

most of ratings are missing. To solve this problem, the authors propose to use a different

RBM for each user. An RBM only has visible softmax units for the items rated by the

corresponding user, which means an RBM has few connections if the user rated only a

few movies. Figure 2.1 shows an RBM for one user. As we can see, only those rated

items have connections with hidden units. If user a and user b rated the same item,

their RBMs share weights connected to the corresponding visible unit.

Given a set of hidden units h, the observed binary rating matrix V can be derived as:

p(vki = 1|h) =
exp(bki +

∑F
j=1 hjW

k
ij)∑K

l=1 exp(b
l
i +
∑F

j=1 hjW
k
ij)

(2.1)

10

Contents 11

Figure 2.1: Architecture of one RBM

where bki is is the bias term of rating k for item i, hj is the value of jth hidden unit, W k
ij

is the weight connecting rating k of item i and jth hidden unit.

Similarly, given a set of visible units v, the hidden units h can be derived as:

p(hj |v) = σ(bj +
m∑
i=1

K∑
k=1

vkiW
k
ij) (2.2)

where σ(x) is the logistic function.

2.2 Learning

In the learning procedure, gradient ascent is employed to maximize the log-likelihood.

The gradients can be obtained as Eq. 2.3:

∆W k
ij = ε

∂logp(V)

∂W k
ij

= ε
(〈
vki hj

〉
data
−
〈
vki hj

〉
model

) (2.3)

where ε is the learning rate. In Eq. 2.3,
〈
vki hj

〉
data

is defined as, in the data, the fre-

quency of both item i with rating k and jth hidden unit turned on together.
〈
vki hj

〉
model

is defined as the expectation with respect to the distribution of the model. However, com-

puting
〈
vki hj

〉
model

directly is intractable. To avoid compute
〈
vki hj

〉
model

, they propose

to approximate the gradient of the objective function by using ”Contrastive Divergence

Contents 12

[45]” as following:

∆W k
ij = ε

(〈
vki hj

〉
data
−
〈
vki hj

〉
T

)
(2.4)

where
〈
vki hj

〉
T

denotes samples from running Gibbs sampler by using Eq. 2.1 and Eq.

2.2 for T steps.

2.3 Prediction

Given observed ratings V, we can employ Eq. 2.2 to calculate the states of its hidden

units and then apply the following formula to calculate the expected value for a movie

i:

pi =
∑
k

p(vki = 1|h)k (2.5)

2.4 Critique

Although the authors show that RBM can be successfully applied to the recommenda-

tion problem and slightly outperforms traditional Matrix Factorization, the proposed

model is not deep enough and only consists of 2 layers. Learning deep models has been

successfully applied in the domain of modeling temporal data [46] and learning word

embedding [47, 48]. Training a deeper RBM is helpful for capturing hierarchical latent

factors of users and items and more accurately modeling ratings.

RBM does not make use of content information, such as user profiles or review texts.

RBM is typically used with rating data where most ratings are missing and take advan-

tage of this fact for computational tractability. As a result, the proposed model can not

deal with the cold start problem [49], where recommender systems are required to give

recommendations to novel users who have no preference on any items, or recommending

items that no user of the community has rated yet. However, content information is

proved to be effective to reduce the cold start problem [49].

Chapter 3

Collaborative Deep Learning for

Recommender Systems

To address the cold start problem, [43] introduces Collaborative Deep Learning (CDL)

to utilize review texts and ratings. [43] introduces CDL to integrate a bayesian Stack

Denoise Auto Encoder (SDAE) [50] and Collaborative Topic Regression (CTR) [20] learn

latent factors of items from review texts and draw a latent user vector from Gaussian

distribution.

3.1 Collaborative Deep Learning

To learn from review text of each item, CDL represents its reviews by using bag-of-words

scheme. All J items is represented by a J × S matrix Xc, where the jth row of Xc is

the bag-of-words vector Xc,j∗ of vocabulary size S for item j. As shown in Fig. 3.1,

these vectors can be fed into a bayesian SDAE network to learn item latent factors.

The input X0,j∗ and output Xc,j∗ of the network are forced to be the same. Thus, the

middle layer of the network can be viewed as a compressed representation of the items

vj . Simultaneously, latent factors of user ui is drew from a Gaussian distribution and

the rating predictions are modeled by another Gaussian distribution with the mean of

ui
T vj . The generative process of CDL can be defined as:

1. For each layer of the SDAE network

(a) For each column n of the weight matrix Wl, draw Wl,∗n from N(0, λ−1w IKl
)

(b) Draw the bias term bl from N(0, λ−1w IKl
).

(c) For each row j of Xl, draw Xl,j∗ from Delta(σ(Xl−1,j∗Wl + bl)).

13

Contents 14

Figure 3.1: A 4-layer SDAE

Figure 3.2: Architecture of CDL

2. For each item j

(a) Draw a clean input Xc,j∗ from N(XL,j∗, λ
−1
n IJ).

(b) Draw a latent item offset vector εj from N(0, λ−1v IK) and then set the latent

item vector as: vj = εj + XT
L/2,j∗.

3. Draw a latent user vector for each user i: ui from N(0, λ−1u IK)

4. Draw a rating rij from N(ui
T vj , c

−1
ij).

3.2 Learning the Parameters

To train CDL, we have two sets of parameters to be optimized: parameters of the

network {Wl, bl} and latent factors {ui, vj}. Note that latent factor of items are the

outputs of the middle layer XL/2. Thus, the middle layer XL/2 serves as a bridge to

connect the network and rating modeling.

Contents 15

Given hyper parameters {λu, λv, λw, λn}, the log likelihood of CDL can be derived as:

L =− λu
2

∑
i

‖ui‖22−
λw
2

∑
l

(‖Wl‖2F+(‖bl‖22)−
λv
2

∑
j

∥∥∥vj − fe(X0,j∗,W
+)

T
∥∥∥2
2

− λn
2

∑
j

∥∥fr(X0,j∗,W
+) −Xc,j∗

∥∥2
2
−
∑
i,j

ci,j
2

(ri,j − uTi vj)
2

(3.1)

where −λu
2

∑
i ‖ui‖

2
2 and −λw

2

∑
l (‖Wl‖2F+(‖bl‖22) are regularization terms, the square

error between latent factors of items vj and the output of the middle layer fe(X0,j∗,W
+)

is minimized by −λv
2

∑
j

∥∥∥vj − fe(X0,j∗,W
+)

T
∥∥∥2
2
. To force the input and output of the

network to be the same, −λn
2

∑
j

∥∥∥fr(X0,j∗,W
+) −Xc,j∗

∥∥∥2
2

is introduced. In addition,

−
∑

i,j
ci,j
2 (ri,j − uTi vj)

2
approximates ratings by the inner product of ui and vj .

To maximize the log-likelihood of CDL, an EM-style algorithm has been proposed. First,

we fix {Wl, bl}, ui and vj can be optimized by coordinate ascent. We compute the

gradients of L with respect to ui and vJ and set them to zero, leading to the following

updating rules 3.2 and 3.3:

ui ← (V CiV
T + λuIK)

−1
V CiRi (3.2)

vj ← (UCiU
T + λvIK)

−1
(UCjRj + λvfe(X0,j∗,W

+)
T

) (3.3)

Second, fixing ui and vj , they use the back-propagation to learned weights and bias:

{Wl, bl}.

3.3 Critique

CDL is the first deep model to learn from review texts for recommender systems. It

seemly integrates an Auto Encoder and CTR to model ratings. However, CDL still has

several shortcomings.

First, CDL only models item review texts. In recommender systems, user provides

reviews to express their feelings. These review texts can be utilized to learn preference

of users.

Second, review texts are represented by using bag-of-words scheme. As we know, bag-

of-words vectors only convey the frequency of words. If two reviews are semantically

related but use different words, CDL, which uses bag-of-words, may not consider the two

reviews to be similar. The vocabulary in English is very diverse and two reviews can

be semantically similar even with low lexical overlap, so semantic meaning is especially

Contents 16

important. However, semantic meanings, which are essential for reveal user attitudes

and item properties, are lost in CDL.

At last, in CDL, word order is ignored. However, in many text modeling applications,

word order is extremely important [51]. To further improve the performance of CDL,

word order should be taken into consideration while modeling review texts.

Chapter 4

Deep Content-based Music

Recommendation

It is well known that Collaborative Filtering can generally outperform content-based

methods [52]. However, it is not valid when recommending items that have not been

consumed before. To alleviate the cold start problem in music recommendation, some

recommender systems recommend music based on metadata, such as genre, artist and

album. But, the recommendation results are predictable and not useful. Recommender

systems should recommend items that users are unknown of. A better approach is to

analyze music signals to recommend similar songs users have previously listened to. To

capture high level features from music signals, the authors introduce a deep CNN model

to learn latent factors from music signals.

4.1 Weighted Matrix Factorization

In a music system, we only know what songs a user has listened to and how many times

the user has played a song. This is implicit feedback and users never provide explicit

rating. This setting is distinct with traditional matrix factorization. Traditional matrix

factorization is designed to predict ratings. Weighted Matrix Factorization (WMF)

[53] is a modified matrix factorization and for implicit datasets. WMF introduces two

variables:

pui = I(rui > 0) (4.1)

cui = 1 + α log (1 + ε−1rui) (4.2)

where rui is the rating given by user u to item i. I(x) is a indicator function. Variable

pui indicates whether user u prefer item i and cui is a confidence variable.

17

Contents 18

Thus, the objective function of WMF can be written as:

min
x∗,y∗

∑
u,i

cui(pui − xTu yi)
2

+ λ(
∑
u

‖xu‖2
∑
i

‖yi‖2) (4.3)

4.2 Deep Convolutional Neural Network

Since CNN is a supervised deep model, authors use latent factors learned by WMF as

ground truth to train a deep CNN with music signals as inputs. The paper introduces

two objective functions, as Eq. 4.4 and Eq. 4.2, to train a CNN.

min
θ

∥∥yi − y′i∥∥2 (4.4)

min
θ

∑
u,i

cui(pui − xuy′i)
2

(4.5)

In Eq. 4.4, the CNN is trained to minimize the square error between the output vector

of CNN(y′i) and item latent factors(yi) learned by WMF. In Eq. 4.2, the objective

function is used to train the CNN. θ denotes the parameters of the CNN.

4.3 Critique

This paper introduced the first deep model for music recommendation and demonstrated

effective features can be learned from music signals via deep models. However, there are

still several potential flaws.

First, the proposed model employs latent factors learned from WMF as ground truth

to train a deep CNN. Although WMF is efficient to learn latent factors from implicit

feedback, features approximated by WMF is still is not accurate enough to be used as

ground truth to train CNN.

Meta data, such artists, genre or album, is not utilized. Although CNN can capture

patterns existing in music signals, meta data is still informative and can be fused to

learn item features.

Chapter 5

CoNN: Joint Modeling of Users

and Items Using Reviews for

Recommendation

To jointly model users and items using review texts for rating prediction problems, we

propose Cooperative Neural Network (CoNN) to learn hidden latent features for users

and items jointly using two coupled neural networks such that the rating prediction

accuracy is maximized. One of the networks models user behavior using the reviews

written by the user, and the other network models item properties using the written

reviews for the item. The learned latent features for user and item are used to predict the

corresponding rating in a layer introduced on the top of both networks. This interaction

layer is motivated by matrix factorization techniques [1] to let latent factors of users and

items interact with each other.

To capture semantic meaning existing in review texts, CoNN represents review texts

using pre-trained word-embedding technique [47, 54, 55] to extract semantic information

of the reviews. Recently, this representation has shown very good results in many

Natural Language Processing (NLP) tasks [47, 48, 56, 57].

5.1 Architecture

The architecture of the proposed model for rating prediction is shown in Figure 5.1. The

model consists of two parallel neural networks coupled in the last layer, one network for

users (Netu) and one network for items (Neti). User reviews and item reviews are

given to Netu and Neti respectively as inputs, and corresponding rating is produced as

19

Contents 20

User Review Text

…

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

…

.

.

.

.

.

.

kj*

…

…

L
o

o
k

-U
p

L
o

o
k

-u
p

xu

Item Review Text

…

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

…

.

.

.

.

.

.

kj*

…

…

F
u

lly
 C

o
n

n
e
c
te

dyi

(rui - x y)
T

… …

2

C
o

n
v

o
lu

tio
n

M

a
x

-p
o

o
lin

g

… …

C
o

n
v

o
lu

tio
n

M
a
x

-p
o

o
lin

g
F

u
lly

-c
o

n
n

e
c
te

d

iu

Figure 5.1: The architecture of CoNN

the output. In the first layer, denoted as look-up layer, review text for users or items

are represented as matrices of word embeddings to capture the semantic information

in the review texts. Next layers are the common layers used in CNN based models to

discover multiple levels of features for users and items, including convolution layer, max

pooling layer, and fully connected layer. Also, a top layer is added on the top of the

two networks to let the hidden latent factors of user and item to interact with each

other. This layer calculates an objective function that measures the rating prediction

error using the latent factors produced by Netu and Neti. Note that Netu and Neti

only differ in their inputs.

5.2 Network Training

J =
∑

(u,i,rui)∈T

(rui − xTu yi)
2

(5.1)

Given a set of training set T consists of N tuples, we optimize the model through

stochastic gradient descent over shuffled mini-batches. Our network is trained by min-

imizing Eq. 5.1. First, we take derivatives of J with respect to xu and yi, as shown in

Eq. 5.2 and Eq. 5.3.
∂J

∂xu
=

∑
(u,i,rui)∈T

−2(rui − xTu yi)yi (5.2)

Contents 21

∂J

∂yi
=

∑
(u,i,rui)∈T

−2(rui − xTu yi)xu (5.3)

Once we have estimated gradients with respect to xu and yi, we use backpropagation al-

gorithm [25] to efficiently compute gradients of networks as the one proposed in [28, 56].

Because the parameters are in different layers of our networks, we apply the differenti-

ation chain rule through the network until the first layer is reached.

Given the network with parameter set θ, mini-batch Stochastic Gradient Descent (SGD)

[58] is used to minimize Eq. 5.1 with respect to θ. In each iteration, SGD randomly se-

lects a batch of training examples (u, v, r) from the training set, computes its derivatives

with respect to each parameter of the model and updates its parameters. The update

rule is as following:

θ ← θ − λ∂J
∂θ

(5.4)

where λ is the learning rate.

5.3 Critique

Generally, Cooperative Neural Network (CoNN) is based on an observation that both

user reviews and item reviews can reveal different aspects of users and items, this model

couples two Neural Networks together. User reviews and item reviews are taken as

inputs to discover user and item features. By introducing a shared layer on the top of

these two NNs to couple them together, user and item representations are mapped into

a common feature space and can effectively interact with each other to accurately model

ratings.

One drawback of CoNN is that, similar to MF, CoNN can not deal with those users

or items without ratings. Although experiments show that CoNN is effective to those

users with a few ratings, CoNN is unable to handle users without a single rating. In the

future, to enable CoNN produce reasonable recommendations to newly joining users, we

can incorporate user information, such as ages or gender, into the model.

Chapter 6

Conclusion

In this article, we firstly introduce techniques involved in deep learning and recommender

systems. Then, a survey and critique of deep learning on recommender systems are

provided.

Although deep learning poses a great impact in various areas, deep learning techniques

applied to recommender systems have not been fully exploited. Traditional recommender

systems tend to recommend items based on ratings. However, due to the data sparsity

problem, information existing in ratings is not sufficient to approximate latent factors

of users and items. To alleviate the data sparsity problem, content-based recommender

systems are introduced. Besides ratings, there are additional information, such as re-

view texts, images or user profiles, can be utilized. Content-based recommender systems

exploit these information to learn user preferences and item properties. However, most

of content-based approaches are based on hand-crafted features for users and items.

Although these features can be effective in different circumstances, hand-crafted fea-

tures often require extensive human labor and often rely on expert knowledge. Also,

usually, hand-crafted features are not generalized well. Deep learning techniques en-

able model to automatically learn features for users and items from different resources.

These features are generalized well and can be effectively used to improve the quality of

recommendation.

In the work of [9], they build a RBM model to capture user and item rating patterns.

Although this model only utilize ratings and is not deep enough to capture complex

features, it achieves better results by comparing to MF. It is the first attempt to apply

deep learning techniques to recommender systems and show encouraging results. Later,

due to the advantage of deep learning in modeling text, audio and images, contented-

based deep recommender systems are introduced. By either modeling text or audio

22

Bibliography 23

signals, these deep models alleviate the sparsity problem and achieves state-of-the-art

performance.

Overall, due to the limitation of the traditional recommendation approaches, the poten-

tial of content information has not been fully exploited. With the help of the advantage

of deep learning in modeling different types of data, deep recommender systems can

better understand what customers need and further improve recommendation quality.

Bibliography

[1] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques

for recommender systems. Computer, (8):30–37, 2009.

[2] Prem Melville, Raymond J Mooney, and Ramadass Nagarajan. Content-boosted

collaborative filtering for improved recommendations. In AAAI/IAAI, pages 187–

192, 2002.

[3] Yehuda Koren. Factorization meets the neighborhood: a multifaceted collaborative

filtering model. In Proceedings of the 14th ACM SIGKDD international conference

on Knowledge discovery and data mining, pages 426–434. ACM, 2008.

[4] Xiaoyuan Su and Taghi M Khoshgoftaar. A survey of collaborative filtering tech-

niques. Advances in artificial intelligence, 2009:4, 2009.

[5] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John Riedl.

Grouplens: an open architecture for collaborative filtering of netnews. In Proceed-

ings of the 1994 ACM conference on Computer supported cooperative work, pages

175–186. ACM, 1994.

[6] Jonathan L Herlocker, Joseph A Konstan, Al Borchers, and John Riedl. An al-

gorithmic framework for performing collaborative filtering. In Proceedings of the

22nd annual international ACM SIGIR conference on Research and development

in information retrieval, pages 230–237. ACM, 1999.

[7] Koji Miyahara and Michael J Pazzani. Collaborative filtering with the simple

bayesian classifier. In PRICAI 2000 Topics in Artificial Intelligence, pages 679–

689. Springer, 2000.

[8] Bin Shen, Xiaoyuan Su, Russell Greiner, Petr Musilek, and Corrine Cheng. Dis-

criminative parameter learning of general bayesian network classifiers. In Tools with

Artificial Intelligence, 2003. Proceedings. 15th IEEE International Conference on,

pages 296–305. IEEE, 2003.

[9] Ruslan Salakhutdinov and Andriy Mnih. Probabilistic matrix factorization. In

NIPS, pages 1257–1264. Curran Associates, Inc., 2007.

[10] Stefano Baccianella, Andrea Esuli, and Fabrizio Sebastiani. Multi-facet rating of

product reviews. In Advances in Information Retrieval, pages 461–472. Springer,

2009.

24

Bibliography 25

[11] Yohan Jo and Alice H Oh. Aspect and sentiment unification model for online review

analysis. In Proceedings of the fourth ACM international conference on Web search

and data mining, pages 815–824. ACM, 2011.

[12] Minqing Hu and Bing Liu. Mining and summarizing customer reviews. In Proceed-

ings of the tenth ACM SIGKDD international conference on Knowledge discovery

and data mining, pages 168–177. ACM, 2004.

[13] Ana-Maria Popescu and Orena Etzioni. Extracting product features and opinions

from reviews. In Natural language processing and text mining, pages 9–28. Springer,

2007.

[14] Michael Gamon. Sentiment classification on customer feedback data: noisy data,

large feature vectors, and the role of linguistic analysis. In Proceedings of the 20th

international conference on Computational Linguistics, page 841. Association for

Computational Linguistics, 2004.

[15] Niklas Jakob, Stefan Hagen Weber, Mark Christoph Müller, and Iryna Gurevych.

Beyond the stars: exploiting free-text user reviews to improve the accuracy of

movie recommendations. In Proceedings of the 1st international CIKM workshop

on Topic-sentiment analysis for mass opinion, pages 57–64. ACM, 2009.

[16] Samuel Brody and Noemie Elhadad. An unsupervised aspect-sentiment model for

online reviews. In Human Language Technologies: The 2010 Annual Conference

of the North American Chapter of the Association for Computational Linguistics,

pages 804–812. Association for Computational Linguistics, 2010.

[17] Ivan Titov and Ryan McDonald. Modeling online reviews with multi-grain topic

models. In Proceedings of the 17th international conference on World Wide Web,

pages 111–120. ACM, 2008.

[18] Julian McAuley and Jure Leskovec. Hidden factors and hidden topics: understand-

ing rating dimensions with review text. In Proceedings of the 7th ACM conference

on Recommender systems, pages 165–172. ACM, 2013.

[19] Guang Ling, Michael R Lyu, and Irwin King. Ratings meet reviews, a combined ap-

proach to recommend. In Proceedings of the 8th ACM Conference on Recommender

systems, pages 105–112. ACM, 2014.

[20] Chong Wang and David M Blei. Collaborative topic modeling for recommending

scientific articles. In Proceedings of the 17th ACM SIGKDD international conference

on Knowledge discovery and data mining, pages 448–456. ACM, 2011.

[21] Yao Wu and Martin Ester. FLAME: A probabilistic model combining aspect based

opinion mining and collaborative filtering. In WSDM, pages 199–208. ACM, 2015.

[22] Qiming Diao, Minghui Qiu, Chao-Yuan Wu, Alexander J. Smola, Jing Jiang, and

Chong Wang. Jointly modeling aspects, ratings and sentiments for movie recom-

mendation (JMARS). In KDD, pages 193–202. ACM, 2014.

Bibliography 26

[23] Yang Bao, Hui Fang, and Jie Zhang. Topicmf: Simultaneously exploiting ratings

and reviews for recommendation. In AAAI, pages 2–8. AAAI Press, 2014.

[24] Geoffrey Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm

for deep belief nets. Neural computation, 18(7):1527–1554, 2006.

[25] Yves Chauvin and David E Rumelhart. Backpropagation: theory, architectures,

and applications. Psychology Press, 1995.

[26] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed,

Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N

Sainath, et al. Deep neural networks for acoustic modeling in speech recognition:

The shared views of four research groups. Signal Processing Magazine, IEEE, 29

(6):82–97, 2012.

[27] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of

data with neural networks. Science, 313(5786):504–507, 2006.

[28] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based

learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–

2324, 1998.

[29] Yoshua Bengio. Learning deep architectures for ai. Machine Learning, 2(1):1–127,

2009.

[30] Yoshua Bengio and Yann LeCun. Scaling learning algorithms towards ai. Large-scale

kernel machines, 34:1–41, 2007.

[31] Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y Ng. Convolutional

deep belief networks for scalable unsupervised learning of hierarchical represen-

tations. In Proceedings of the 26th Annual International Conference on Machine

Learning, pages 609–616. ACM, 2009.

[32] Fu Jie Huang, Y-Lan Boureau, Yann LeCun, et al. Unsupervised learning of in-

variant feature hierarchies with applications to object recognition. In 2013 IEEE

Conference on Computer Vision and Pattern Recognition, pages 1–8. IEEE, 2007.

[33] Wen-tau Yih, Xiaodong He, and Christopher Meek. Semantic parsing for single-

relation question answering. In Proceedings of ACL, 2014.

[34] Fandong Meng, Zhengdong Lu, Mingxuan Wang, Hang Li, Wenbin Jiang, and Qun

Liu. Encoding source language with convolutional neural network for machine

translation. arXiv preprint arXiv:1503.01838, 2015.

[35] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional neural

network for modelling sentences. arXiv preprint arXiv:1404.2188, 2014.

[36] Cicero Nogueira dos Santos, Bing Xiang, and Bowen Zhou. Classifying relations

by ranking with convolutional neural networks. arXiv preprint arXiv:1504.06580,

2015.

[37] Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton. Restricted boltzmann

Bibliography 27

machines for collaborative filtering. In Proceedings of the 24th international con-

ference on Machine learning, pages 791–798. ACM, 2007.

[38] Aaron Van den Oord, Sander Dieleman, and Benjamin Schrauwen. Deep content-

based music recommendation. In Advances in Neural Information Processing Sys-

tems, pages 2643–2651, 2013.

[39] Xinxi Wang and Ye Wang. Improving content-based and hybrid music recommen-

dation using deep learning. In Proceedings of the ACM International Conference

on Multimedia, pages 627–636. ACM, 2014.

[40] Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, and An-

drew Y Ng. Multimodal deep learning. In Proceedings of the 28th international

conference on machine learning (ICML-11), pages 689–696, 2011.

[41] Nitish Srivastava and Ruslan R Salakhutdinov. Multimodal learning with deep

boltzmann machines. In Advances in neural information processing systems, pages

2222–2230, 2012.

[42] Ali Mamdouh Elkahky, Yang Song, and Xiaodong He. A multi-view deep learning

approach for cross domain user modeling in recommendation systems. In Proceed-

ings of the 24th International Conference on World Wide Web, pages 278–288.

International World Wide Web Conferences Steering Committee, 2015.

[43] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. Collaborative deep learning for

recommender systems. In Proceedings of the 21th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 1235–1244. ACM,

2015.

[44] Rong Pan, Yunhong Zhou, Bin Cao, Nathan N Liu, Rajan Lukose, Martin Scholz,

and Qiang Yang. One-class collaborative filtering. In Data Mining, 2008. ICDM’08.

Eighth IEEE International Conference on, pages 502–511. IEEE, 2008.

[45] Geoffrey E Hinton. Training products of experts by minimizing contrastive diver-

gence. Neural computation, 14(8):1771–1800, 2002.

[46] Graham W Taylor, Geoffrey E Hinton, and Sam T Roweis. Modeling human motion

using binary latent variables. In Advances in neural information processing systems,

pages 1345–1352, 2006.

[47] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-

tributed representations of words and phrases and their compositionality. In Ad-

vances in neural information processing systems, pages 3111–3119, 2013.

[48] Joseph Turian, Lev Ratinov, and Yoshua Bengio. Word representations: a simple

and general method for semi-supervised learning. In Proceedings of the 48th annual

meeting of the association for computational linguistics, pages 384–394. Association

for Computational Linguistics, 2010.

[49] Andrew I Schein, Alexandrin Popescul, Lyle H Ungar, and David M Pennock. Meth-

ods and metrics for cold-start recommendations. In Proceedings of the 25th annual

Bibliography 28

international ACM SIGIR conference on Research and development in information

retrieval, pages 253–260. ACM, 2002.

[50] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-

Antoine Manzagol. Stacked denoising autoencoders: Learning useful representa-

tions in a deep network with a local denoising criterion. The Journal of Machine

Learning Research, 11:3371–3408, 2010.

[51] Hanna M Wallach. Topic modeling: beyond bag-of-words. In Proceedings of the

23rd international conference on Machine learning, pages 977–984. ACM, 2006.

[52] Malcolm Slaney. Web-scale multimedia analysis: Does content matter? MultiMedia,

IEEE, 18(2):12–15, 2011.

[53] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit

feedback datasets. In Data Mining, 2008. ICDM’08. Eighth IEEE International

Conference on, pages 263–272. Ieee, 2008.

[54] Joseph Turian, Lev Ratinov, Yoshua Bengio, and Dan Roth. A preliminary eval-

uation of word representations for named-entity recognition. In NIPS Workshop

on Grammar Induction, Representation of Language and Language Learning, pages

1–8, 2009.

[55] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khu-

danpur. Recurrent neural network based language model. In INTERSPEECH,

pages 1045–1048, 2010.

[56] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu,

and Pavel Kuksa. Natural language processing (almost) from scratch. The Journal

of Machine Learning Research, 12:2493–2537, 2011.

[57] Yoshua Bengio, Holger Schwenk, Jean-Sébastien Senécal, Fréderic Morin, and Jean-

Luc Gauvain. Neural probabilistic language models. In Innovations in Machine

Learning, pages 137–186. Springer, 2006.

[58] Léon Bottou. Stochastic gradient descent tricks. In Neural Networks: Tricks of the

Trade, pages 421–436. Springer, 2012.

	Abstract
	1 Introduction
	1.1 Recommender Systems
	1.1.1 Collaborative Filtering
	1.1.1.1 Memory-based CF
	1.1.1.2 Model-based CF

	1.1.2 Content-based Recommender Systems

	1.2 Deep Learning

	2 Restricted Boltzmann Machines for Collaborative Filtering
	2.1 The Model
	2.2 Learning
	2.3 Prediction
	2.4 Critique

	3 Collaborative Deep Learning for Recommender Systems
	3.1 Collaborative Deep Learning
	3.2 Learning the Parameters
	3.3 Critique

	4 Deep Content-based Music Recommendation
	4.1 Weighted Matrix Factorization
	4.2 Deep Convolutional Neural Network
	4.3 Critique

	5 CoNN: Joint Modeling of Users and Items Using Reviews for Recommendation
	5.1 Architecture
	5.2 Network Training
	5.3 Critique

	6 Conclusion

